Pages

Sunday, November 30, 2008

Notes on Software Design, Chapter 1: Partitioning

In a previous post, I discussed Alexander’s theory of Centers from a software design perspective. My (current) theory is that a Center is (in software) a locus of highly cohesive information.

It is worth noting that in order to create highly cohesive units, we must be able to separate things. This may seem odd at first, since cohesion (as a force) is about keeping things together, not apart, but is easily explained.
Without some way to partition knowledge, we would have to keep everything together. In the end, conceptual cohesion will be low, because a multitude of concepts, abstractions, etc., would all mash up into an incoherent mess.

Let’s focus on "executable knowledge", and therefore leave some artifacts (like requirement documents) away for a while. We can easily see that we have many ways to separate executable knowledge, and that those ways apply at different granularity levels.

- Hardware separation (as in distributed computing).
- Process separation (a lightweight form of distributed computing, with co-located processes).
- In-process component separation (e.g. DLLs).
- Interface – Implementation separation (e.g. interface inheritance in OO languages).
- In-component access protection, like public/private class members, or other visibility mechanism like modules in Modula 2.
- Function separation (simply different functions).

Knowledge is not necessarily encoded in code – it can be encoded in data too. We have several ways to partition data as well, and they apply to the entire hierarchy of storage.

- Mass storage separation (that is, using different databases).
- Different tables (or equivalent concept) within the same mass storage.
- Module or class static data (inaccessible outside the module).
- Data member (inaccessible outside the instance).
- Local / stack based variables (inaccessible outside the function).

It is interesting to see how poor data separation can harm code separation. Sharing tables works against hardware separation. Shared memory works against process separation. Global data with extern visibility works against module separation. Get/Set functions work against in-component access protection.
Code and data separation are not orthogonal concepts, and therefore they can interfere with each other.

There is more to say about separation and its relationship with old concepts like coupling (straight from the '70s). More on this another time; right now, I need to set things up for Chapter 2.

In the same post above, I mentioned the idea that centers have fractal nature, that is, they appear at different abstraction and granularity levels. If there are primordial forces in software, it seems reasonable that they follow the same fractal nature: in other words, they should apply at all abstraction levels, perhaps with a different slant.

The first force we have to deal with is Gravity. Gravity works against separation, and as such, is a force we cannot ignore. Gravity, as in physics, has to do with Mass, and another manifestation of Mass is Inertia. Gravity, like in the physical world, is a pervasive force, and therefore, separation always entails a cost. Surrending to gravity, however, won't make your software fly :-). I’ll talk about all this very soon.

On a more personal note, I haven’t said much about running lately. I didn’t give up; I just have nothing big to tell :-). Anyway: there is still a little snow around here, but I was beginning to feel like a couch potato today, so I geared up and went for a 10Km (slow :-) run. At Km 4 it started raining :-)), but not so much to require an about face. At Km 8 the rain stopped, and I ran my last 2 Km slightly faster. It feels so great to be alive :-).